

 Navigation

 	
 index

 	TestStack_White latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/teststack-white/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/teststack-white/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	TestStack_White latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.4.

 AdvancedTopics/PositionBasedSearch.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

Speed up performance by Position based search

Performance of finding UIItems (based on search criteria) is proportional to the number of items on a window. A UIItem is found by enumerating over all the controls in a window (at windows messages level, everything is a window, try spy++ to understand this better). Smaller the scope of faster would be search. Position based search is based on this idea.

When finding a window from an application or another window you need to specify the identification of the window. This identification has to be unique as this is the identification for the cache. This cache is stored in the xml file. Duplicate identification would not cause any failures but you would not get benefit of position based search in such cases. This is how to do this.

Window window = application.GetWindow("Customer - Foo", InitializeOption.NoCache.AndIdentifiedBy("Customer"));

The identification is tied to the type of window and not instance of window. So even if I was doing this somewhere else in the code where my customer name is “Bar” I would do this.

Window window = application.GetWindow("Customer - Bar", InitializeOption.NoCache.AndIdentifiedBy("Customer"));

Similarly for modal windows same applies:

Window modalWindow = window.ModalWindow("Address - Home", InitializeOption.NoCache.AndIdentifiedBy("Address"));

You also need to do

application.ApplicationSession.Save();

at the end of the test (or after killing the application).

White remembers the position of UIItems on a window when you run your program for the first time and stores it on the file system as an xml file (see Configuration for setting the directory). In the next run it finds the UIItems based on the position of UIItem which is very fast because there is only one item at the point. If the item is not found at the position it would perform the normal search.
The position which is saved in xml file is relative to the window, hence change in position of window doesn’t affect position based find. Changes in layout of items in a window are taken care of by overwriting the position when it changes. You need to delete these files when you switch to new version of white. After first run they would be cached again.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/Waiting.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 White strives to eliminate any need whatsoever for doing Thread.Sleep and retry in your test programs. So if you find yourself doing these things in your program, please use any one applicable options below. If you don’t find it, please raise an issue.

		When any action is performed white automatically waits till the window can respond again to next action. One of the thing white does during this is to call windowPattern.WaitForInputIdle on the parent window of the UI item on which the action is performed. In cases where the window would be closed as a result of the action performed, this call would throw exception internally, depending on timing of the call. The caller doesn’t have to worry about this as this exception is trapped.
All of this happens by default, without having to configure anything.

		Wait based on presence of hour glass. This can be configured by using WaitBasedOnHourGlass property (default value true). This ensures that the test would wait till the cursor remains in hour-glass or default-and-hour-glass. When configured it would happen for each and every action. It is very common in applications to not use hour glass to provide feedback to the user when the application is busy. It is highly recommended to do this, as WaitWhileBusy call on the process object in .NET is not reliable at all.

		There are cases where the above two strategy aren’t enough and hence white provides its own wait mechanism. In this test program waits until the certain condition matches. As soon as the condition matches it would return. There is maximum wait duration. This duration can be configured by setting BusyTimeout property.

There are other places where you need to set the timeout (all in milli seconds set to some defaults).

Property Description
PopupTimeout Timeout period for finding a popup
TooltipWaitTime Maximum duration in within which tooltip would appear (see Tool tip problem)
SuggestionListTimeout Timeout period for finding a suggestion list on a textbox
UIAutomationZeroWindowBugTimeout Timeout till any window is found for an application. There is a bug in UIAutomation because of which it sometimes doesn’t find windows for a process

For configuring above have a look at the Configuration section
Timeout means the upper time limit of search. White keeps trying till this time, after every 100 ms.
Custom wait hook

In addition to wait provided by default by white, as mentioned above. From release 0.20 onwards you can also hook in custom wait mechanism. This hook gets called every time after the above wait checks are performed. In this hook you can wait for your conditions to finish. This is useful if your wait scenarios are quite pervasive and you have put in this check at lot of places in your test.

Steps to hook you custom wait:Implement the interface White.Core.Configuration.IWaitHook.Implement the WaitFor method in it to wait for as long as your test requires. White passed in the UIItemContainer (most of the time this is just the window) object to provide the context of call. e.g. you can wait till you can find a UI Item in this container.
Set the wait hook by setting CoreAppXmlConfiguration.Instance.AdditionalWaitHook value

A note on the custom wait hook:

For the hook to work CoreAppXmlConfiguration.Instance.AdditionalWaitHook has to be set to the object implementing the IWaitHook interface, e.g:

public class CustomWait : IWaitHook
{
 public CustomWait()
 {
 CoreAppXmlConfiguration.Instance.AdditionalWaitHook = this;
 }

 // Implementation of the IWaitHook interface
 public void WaitFor(UIItemContainer uiItemContainer)
 {
 ...
 }
}

Note: IWaitHook is quite heavy handed, it checks after every action (which for a single logical action, there may be multiple internal actions). This can make it rather slow. See the next section for some other techniques

Handling asynchronous/background work (WPF)

I tend to use the UI automation HelpText to tell White that my application is busy, this approach is not supported by White out of the box, so you will have to put it in yourself. These code samples are for WPF, but the technique can be used in other UI Frameworks

First, you want to create an attached property:

public static class BusyAutomationBehaviour
{
 public static readonly DependencyProperty IsApplicationBusyProperty =
 DependencyProperty.RegisterAttached("IsApplicationBusy", typeof (bool), typeof (BusyAutomationBehaviour), new PropertyMetadata(OnChanged));

 private static void OnChanged(DependencyObject d, DependencyPropertyChangedEventArgs e)
 {
 AutomationProperties.SetHelpText(d, GetIsApplicationBusy(d) ? "Busy" : string.Empty);
 }

 public static void SetIsApplicationBusy(DependencyObject element, bool value)
 {
 element.SetValue(IsApplicationBusyProperty, value);
 }

 public static bool GetIsApplicationBusy(DependencyObject element)
 {
 return (bool) element.GetValue(IsApplicationBusyProperty);
 }
}

You can attach this on your main Window, then bind it to a property which is true when your application is busy. Now this requires your application to know when it is busy, so I hope you have made this a cross cutting concern in your app.

<Window
 wpfTodo:BusyAutomationBehaviour.IsApplicationBusy="{Binding LoadingTasks}">

Then in your [Screen](wiki\ScreenPattern) you can have a WaitWhileBusy helper.

 public void WaitWhileBusy()
 {
 Retry.For(ShellIsBusy, isBusy => isBusy, TimeSpan.FromSeconds(30));
 }

 bool ShellIsBusy()
 {
 var currentPropertyValue = WhiteWindow.AutomationElement.GetCurrentPropertyValue(AutomationElement.HelpTextProperty);
 return currentPropertyValue != null && ((string)currentPropertyValue).Contains("Busy");
 }

I hope to expand this article later.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/file.png

ScreenObjects/ScreenRepository.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 Our hand written screen class:

 public class CreateCustomerStep1Screen
 {
 private readonly Window window;
 private readonly Application application;

 public CreateCustomerStep1Screen(Window window, Application application)
 {
 this.window = window;
 this.application = application;
 }

 public CreateCustomerStep2Screen FillAndNext(Customer customer)
 {
 window.Get<TextBox>("nameTextBox").BulkText = customer.Name;
 window.Get<TextBox>("ageTextBox").BulkText = customer.Age;
 window.Get<Button>("nextButton").Click();
 Window step2 = application.GetWindow("Create Customer Step2", InitializeOption.NoCache);
 return new CreateCustomerStep2Screen(step2, application);
 }
 }

and the test:

 [Test]
 public void Create()
 {
 DashboardScreen dashboardScreen = new DashboardScreen(window, application);
 Customer customer = new Customer("Rakesh Kumar", "26", "34343545");
 CreateCustomerStep1Screen step1Screen = dashboardScreen.LaunchCreateCustomer();
 step1Screen.FillAndNext(customer);
 CreateCustomerStep2Screen step2Screen = new CreateCustomerStep2Screen(window, application);
 step2Screen.Fill(customer);
 }

In the screen class, lets look closely at how we are interacting with UIItems. That is populating the Textbox and clicking on button in this case. We are:
asking the window for a UIItem
specifying the type of the UIItem
specifying the identification of UIItem
calling the UIItem method, optional passing the value

White helps in doing step 1,2 and 3 easily. Screen Repository and Screen Recorder frameworks which works on top of White Core does this. These are available as Repository.dll and Recorder.exe respectively in white distribution. Instead of evolving from what we have in above example lets see the end result first.

Till now we have been writing the screen class by hand. We can change out CreateCustomerStep1Screen to look like this by introducing a few fields and inheriting from AppScreen:

 public partial class CreateCustomerStep1Screen : AppScreen
 {
 protected TextBox NameTextBox;
 protected TextBox AgeTextBox;
 protected Button NextButton;
 protected Button CancelButton;

 protected CreateCustomerStep1Screen() {}

 public CreateCustomerStep1Screen(Window window, ScreenRepository screenRepository) : base(window, screenRepository) {}

 public virtual void FillAndNext(Customer customer)
 {
 NameTextBox.BulkText = customer.Name;
 AgeTextBox.BulkText = customer.Age;
 NextButton.Click();
 }
 }

And this is how the test uses the screen

 [Test]
 public void Create()
 {
 ScreenRepository screenRepository = new ScreenRepository(application.ApplicationSession);
 Dashboard dashboard = screenRepository.Get<Dashboard>("Dashboard", InitializeOption.NoCache);
 CreateCustomerStep1Screen customerStep1Screen = dashboard.LaunchCreateCustomer();

 Customer customer = new Customer("Rahul", "20", "4366654");
 CreateCustomerStep2Screen customerStep2Screen = customerStep1Screen.FillAndNext(customer);
 customerStep2Screen.Finish(customer);
 }

ScreenRepository as the name suggests is the repository of the screens. All the screens should be retrieved from it. ScreenRepository is initialized for a particular application. When asked for a window it internally calls the application to find the window and creates a screen object. But before returning it to the caller it initialized all the fields in the screen class. (The screen class, as shown above, consists of all the UIItems present in the window).

The initialization of field in screen class works on the name of the field and the type of the UIItem defined.
e.g. for a field defined like this: protected TextBox NameTextBox;

ScreenRepository would find it by, calling window.Get<TextBox>("NameTextBox");

Or in other words, white supports convention (over configuration) based approach. You can Change ScreenRepository field load strategy (see below). ScreenRepository puts a proxy object for UIItem to avoid initialization until needed. This is done keeping the performance of screens which has a more than handful of UIItems.

Not having to initialize UIItems in screen class, reduces the clutter in the screen class code and makes the work of test developer little easier. Since the screen can change during the course of development of application, it is a good idea to keep the generated and hand code class in separate files.

Change ScreenRepository field load strategy

ScreenRepository (factory for screen classes) populates the fields in the screen class generated by the Recorder. The strategy for doing this is based on the type of the UIItem and the name of the field. The name of field is translated into AutomationId for managed application (under test) and UIAutomation Name property in unmanaged (aut).
This behavior can be changed by putting attributes on these fields. Following are the attributes which you can use:
AutomationId, Index, FrameworkId and Text. These attributes tell the ScreenRepository about the criteria based on which this particular UIItem is would be searched in a window.
Multiple attributes can be used on a single field, in which the search criteria is “AND”ed.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/ajax-loader.gif

ScreenObjects/RefactoringToUseScreenObjects.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

Making Tests more Readable

Lets start with an example of which creates a customer.

 [Test]
 public void Create()
 {
 Application application = Application.Launch(@"..\..\..\SampleApplication\bin\debug\SampleApplication.exe");
 Window window = application.GetWindow("Dashboard", InitializeOption.NoCache);
 Hyperlink createCustomerLink = window.Get<Hyperlink>("createCustomer");
 createCustomerLink.Click();
 Window step1 = application.GetWindow("Create Customer Step1", InitializeOption.NoCache);
 step1.Get<TextBox>("nameTextBox").BulkText = "Rakesh Kumar";
 step1.Get<TextBox>("ageTextBox").BulkText = "26";
 step1.Get<Button>("nextButton").Click();
 Window step2 = application.GetWindow("Create Customer Step2", InitializeOption.NoCache);
 step2.Get<TextBox>("phoneNumberTextBox").BulkText = "123213213";
 step2.Get<Button>("submitButton").Click();
 application.Kill();
 }

This test works fine. There is slight problem i.e. if the test fails (because application changed e.g.), then the application would remain open after the test. To ensure that it happens we can use NUnit’s TearDown method.
Also If I have to write another test which tests whether I can create a customer without any name or not, I would be doing some of the same things in it. NUnit provides way of extracting these to a method which is executed before and after every test. Lets see how our test looks with that in place
So the example becomes like this.

 Application application;
 Window window;

 [SetUp]
 public void SetUp()
 {
 application = Application.Launch(@"..\..\..\SampleApplication\bin\debug\SampleApplication.exe");
 window = application.GetWindow("Dashboard", InitializeOption.NoCache);
 }

 [TearDown]
 public void CloseApplication()
 {
 if (application != null) application.Kill();
 }

 [Test]
 public void Create()
 {
 Window step1 = LaunchCreateCustomer();
 FillStep1(step1, "Rakesh Kumar", "26");
 Window step2 = application.GetWindow("Create Customer Step2", InitializeOption.NoCache);
 step2.Get<TextBox>("phoneNumberTextBox").BulkText = "123213213";
 step2.Get<Button>("submitButton").Click();
 }

 [Test]
 public void CreateCustomer_WithoutName()
 {
 Window step1 = LaunchCreateCustomer();
 FillStep1(step1, "Rakesh Kumar", "26");
 Label messageLabel = step1.Get<Label>("messageLabel");
 Assert.AreEqual("/Age should be a valid number", messageLabel.Text);
 }

 private void FillStep1(Window step1, string name, string age)
 {
 step1.Get<TextBox>("nameTextBox").BulkText = name;
 step1.Get<TextBox>("ageTextBox").BulkText = age;
 step1.Get<Button>("nextButton").Click();
 }

 private Window LaunchCreateCustomer()
 {
 Hyperlink createCustomerLink = window.Get<Hyperlink>("createCustomer");
 createCustomerLink.Click();
 return application.GetWindow("Create Customer Step1", InitializeOption.NoCache);
 }

Setup method (as it has the SetUpAttribute on it) would be executed before every test. Also common stuff between two tests has been extracted into a method.
From the point of organizing the tests I would put these two tests in a class (TestFixture in NUnit terminology) like CreateCustomerTest.

[image: RefactoringToUseScreenObjects]

Reusing code across different tests

We have written test for create customer. Lets write a test for searching a customer.

 [TestFixture]
 public class SearchCustomerTest : VideoLibraryTest
 {
 [Test]
 public void SearchByName()
 {
 Window searchWindow = LaunchSearchCustomer();
 searchWindow.Get<TextBox>("nameTextBox").Text = "Suman";
 searchWindow.Get<Button>("search").Click();
 Assert.AreEqual(1, searchWindow.Get<Table>("foundCustomers").Rows.Count);
 }

 [Test]
 public void SearchByAge()
 {
 Window searchWindow = LaunchSearchCustomer();
 searchWindow.Get<TextBox>("ageTextBox").Text = "20";
 searchWindow.Get<Button>("search").Click();
 Assert.AreEqual(1, searchWindow.Get<Table>("foundCustomers").Rows.Count);
 }

 private Window LaunchSearchCustomer()
 {
 Hyperlink searchCustomerLink = window.Get<Hyperlink>("searchCustomer");
 searchCustomerLink.Click();
 return window.ModalWindow("Search Customer", InitializeOption.NoCache);
 }
 }

Because the setup and teardown is same in this test and Customer Create Test and most like common to most of the other tests, it is extracted into the base class called VideoLibraryTest, which looks like this.

 public class VideoLibraryTest
 {
 protected Application application;
 protected Window window;

 [SetUp]
 public void SetUp()
 {
 application = Application.Launch(@"..\..\..\SampleApplication\bin\debug\SampleApplication.exe");
 window = application.GetWindow("Dashboard", InitializeOption.NoCache);
 }

 [TearDown]
 public void CloseApplication()
 {
 if (application != null) application.Kill();
 }
 }

Lets write test for Issuing a movie to the customer.
Following test checks issuing movie to an existing customer.

 [TestFixture]
 public class IssueMovieTest : VideoLibraryTest
 {
 [Test]
 public void Issue_Movie_To_An_Existing_Customer()
 {
 Window searchWindow = LaunchSearchCustomer();
 searchWindow.Get<TextBox>("nameTextBox").Text = "Suman";
 searchWindow.Get<Button>("search").Click();

 Hyperlink searchMoviesLink = window.Get<Hyperlink>("searchMovies");
 searchMoviesLink.Click();

 Window searchMovieWindow = searchWindow.ModalWindow("Search Movies", InitializeOption.NoCache);
 searchMovieWindow.Get<TextBox>("nameTextbox").Text = "Taare";
 searchMovieWindow.Get<Button>("search").Click();
 searchMovieWindow.Get<Button>("select").Click();

 searchWindow.Get<Button>("ok").Click();
 }

 private Window LaunchSearchCustomer()
 {
 Hyperlink searchCustomerLink = window.Get<Hyperlink>("searchCustomer");
 searchCustomerLink.Click();
 return window.ModalWindow("Search Customer", InitializeOption.NoCache);
 }
 }

This test has a problem. There is code duplication between this test and the SearchCustomer test. The way customer is searched is shared between this test and the SearchCustomerTest. It is quite likely that some other tests might need to do the similar thing. We need to move this code to some common place which can be used between different tests. In other words, and not surprisingly, we need an abstraction here. The question to ask is where does this belong. Following OO principle (creating objects based on real world) we can arrive at objects which represents screens in the application.

Let see how our tests would look after introducing Screen Objects.

Screen Objects

Our sample application has these screens: Dashboard, SearchCustomer, SearchMovie, CreateCustomerStep1 and CreateCustomerStep2. Lets see how screen objects for these look like.
Dashboard screen does two things. It launches search customer and search movie screens. Hence the DashboardScreen class looks like this:

 public class DashboardScreen
 {
 private readonly Window window;
 private readonly Application application;

 public DashboardScreen(Window window, Application application)
 {
 this.window = window;
 this.application = application;
 }

 public virtual SearchCustomerScreen LaunchSearchCustomer()
 {
 Hyperlink searchCustomerLink = window.Get<Hyperlink>("searchCustomer");
 searchCustomerLink.Click();
 Window searchCustomerWindow = window.ModalWindow("Search Customer", InitializeOption.NoCache);
 return new SearchCustomerScreen(searchCustomerWindow, application);
 }

 public virtual CreateCustomerStep1Screen LaunchCreateCustomer()
 {
 Hyperlink createCustomerLink = window.Get<Hyperlink>("createCustomer");
 createCustomerLink.Click();
 Window step1Window = application.GetWindow("Create Customer Step1", InitializeOption.NoCache);
 return new CreateCustomerStep1Screen(step1Window, application);
 }
 }

Similarly SearchCustomerScreen:

 public class SearchCustomerScreen
 {
 private readonly Window window;
 private readonly Application application;

 public SearchCustomerScreen(Window window, Application application)
 {
 this.window = window;
 this.application = application;
 }

 public virtual int Search(string name, string age)
 {
 window.Get<TextBox>("nameTextBox").Text = name;
 window.Get<TextBox>("ageTextBox").Text = age;
 window.Get<Button>("search").Click();
 return window.Get<Table>("foundCustomers").Rows.Count;
 }
 }

We have essentially put all the things which happen on a particular screen in corresponding class. These screen classes exposed what you can perform on them.
Using these screen objects, this is how our test looks like.

 [TestFixture]
 public class SearchCustomerTestUsingScreenObjectPattern : VideoLibraryTest
 {
 [Test]
 public void SearchByName()
 {
 DashboardScreen dashboardScreen = new DashboardScreen(window, application);
 SearchCustomerScreen searchCustomerScreen = dashboardScreen.LaunchSearchCustomer();
 int numberOfCustomers = searchCustomerScreen.Search("Suman", "");
 Assert.AreEqual(1, numberOfCustomers);
 }

 [Test]
 public void SearchByAge()
 {
 DashboardScreen dashboardScreen = new DashboardScreen(window, application);
 SearchCustomerScreen searchCustomerScreen = dashboardScreen.LaunchSearchCustomer();
 int numberOfCustomers = searchCustomerScreen.Search("", "20");
 Assert.AreEqual(1, numberOfCustomers);
 }
 }

Functional tests (like any other program) should be readable. The intent of test here is lot clearer than when test was dealing with the UIItems on the screen. This is what we have built.

[image: RefactoringToUseScreenObjects]

We have now got to the point where we have written our own Screen Objects. White takes this further!

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/up-pressed.png

AdvancedTopics/Localisation.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 White uses text internally to find UIItems. These string differ based on locale. e.g. in Table(DataGrid) the header, row header etc, or scroll bars, are identified by some names given to them. These don’t work in locales which are not english based. While doesn’t provide all the locale values but allows you to configure these text.
In the app.config define sections as:

<sectionGroup name="White">

 <section name="UIItemId" type="System.Configuration.NameValueSectionHandler"/>
</sectionGroup>
 <White>
...
 <UIItemId>
 <add key="TableVerticalScrollBar" value="Vertical Scroll Bar"/>
 </UIItemId>
 </White>

Like other configuration these can be set programmatically as well.

UIItemIdAppXmlConfiguration.Instance. TableVerticalScrollBar = "Vertical Scroll Bar";

Configurable values are:

TableVerticalScrollBar=Vertical Scroll Bar
TableHorizontalScrollBar=Horizontal Scroll Bar
TableColumn=Row
TableTopLeftHeaderCell=Top Left Header Cell
TableCellNullValue=(null)
TableHeader=Top Row
HorizontalScrollBar=Horizontal ScrollBar
VerticalScrollBar=Vertical ScrollBar

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment-bright.png

ScreenObjects/TestEntities.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 White supports the concept of Entities in your tests. Entities represent a thing in your application. This might be a Customer, and your application might have a new Customer Screen.

At the moment the communication between screen and test is done by using strings. e.g.

 int numberOfCustomers = searchCustomerScreen.Search("Suman", "");

Lets looks at CreateCustomerTest

 DashboardScreen dashboardScreen = new DashboardScreen(window, application);
 CreateCustomerStep1Screen step1Screen = dashboardScreen.LaunchCreateCustomer();
 step1Screen.FillAndNext("Rakesh Kumar", "26");
 CreateCustomerStep2Screen step2Screen = new CreateCustomerStep2Screen(window, application);
 step2Screen.Fill("34343545");

Where the CreateCustomer screen classes are like this:

 public class CreateCustomerStep1Screen
 {
 public CreateCustomerStep2Screen FillAndNext(string name, string age)
 {
 window.Get<TextBox>("nameTextBox").BulkText = name;
 window.Get<TextBox>("ageTextBox").BulkText = age;
 window.Get<Button>("nextButton").Click();
 Window step2 = application.GetWindow("Create Customer Step2", InitializeOption.NoCache);
 return new CreateCustomerStep2Screen(step2, application);
 }
 }

 public class CreateCustomerStep2Screen
 {
 public void Fill(string phoneNumber)
 {
 window.Get<TextBox>("phoneNumberTextBox").BulkText = phoneNumber;
 window.Get<Button>("submitButton").Click();
 }
 }

Name, age and phoneNumber are properties of a customer in our domain. If case of change in properties on customer, we would have to change the signature of the Fill methods on the Step1 and Step2 screen classes. More importantly while reading the test, the fact that we are trying to create a customer is not explicit. This is pretty simple to do though.

Lets create a Customer class which holds all its data.

 public class Customer
 {
 private readonly string name;
 private readonly string age;
 private readonly string phoneNumber;

 public Customer(string name, string age, string phoneNumber)
 {
 this.name = name;
 this.age = age;
 this.phoneNumber = phoneNumber;
 }

 public string Name
 {
 get { return name; }
 }

 public string Age
 {
 get { return age; }
 }

 public string PhoneNumber
 {
 get { return phoneNumber; }
 }
 }

And the screen class would change to:

 public class CreateCustomerStep1Screen
 {

 public CreateCustomerStep2Screen FillAndNext(Customer customer)
 {
 window.Get<TextBox>("nameTextBox").BulkText = customer.Name;
 window.Get<TextBox>("ageTextBox").BulkText = customer.Age;
 window.Get<Button>("nextButton").Click();
 Window step2 = application.GetWindow("Create Customer Step2", InitializeOption.NoCache);
 return new CreateCustomerStep2Screen(step2, application);
 }
 }

The test now uses the Customer object

 [Test]
 public void Create()
 {
 DashboardScreen dashboardScreen = new DashboardScreen(window, application);
 Customer customer = new Customer("Rakesh Kumar", "26", "34343545");
 CreateCustomerStep1Screen step1Screen = dashboardScreen.LaunchCreateCustomer();
 step1Screen.FillAndNext(customer);
 CreateCustomerStep2Screen step2Screen = new CreateCustomerStep2Screen(window, application);
 step2Screen.Fill(customer);
 }

..and it is slightly more readable than the when we were passing strings. There are larger benefits which we would see in next chapters.

Our current design now looks like this.

[image: TestEntities]

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/down.png

_static/up.png

ScreenObjects/ScreensUIItemsAndEntities.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 Lets have another look closely at the CreateCustomerStep1Screen’s FillAndNext method.

 public virtual CreateCustomerStep2Screen FillAndNext(Customer customer)
 {
 nameTextBox.BulkText = customer.Name;
 ageTextBox.BulkText = customer.Age;
 nextButton.Click();
 return screenRepository.Get<CreateCustomerStep2Screen>("Create Customer Step2", InitializeOption.NoCache);
 }

In this method we are populating the text boxes with the properties of customer. The information needed to do this already present in textbox variable name and customer field variable name. Which means that we can follow a convention based approach to do this transparently. Before doing this, we have to take care of naming convention, which is specific to AUT. White allows you do this.

The screen code would change to:

 public virtual CreateCustomerStep2Screen FillAndNext_UsingAutomaticPopulate(Customer customer)
 {
 Populate(new VideoLibraryFieldMap(), customer);
 nextButton.Click();
 return screenRepository.Get<CreateCustomerStep2Screen>("Create Customer Step2", InitializeOption.NoCache);
 }

Customer class should extend from Repository.EntityMapping.Entity class.
The Populate method on AppScreen class needs an implementation of FieldMap interface.

 public class VideoLibraryFieldMap : FieldMap
 {
 public virtual string GetFieldNameFor(string controlName, Type controlType)
 {
 if (controlType.IsSubclassOf(typeof(TextBox)) || controlType.Equals(typeof(TextBox)))
 {
 return controlName.ToLower().Replace("textbox", string.Empty);
 }
 return string.Empty;
 }
 }

As a practice I would also go ahead and write unit test for above method. The feedback for such unit tests is faster and I can utilize them in future when I want to add more logic to my FieldMap. This is what my unit test would look like:

 [TestFixture]
 public class VideoLibraryFieldMapTest
 {
 [Test]
 public void GetFieldNameFor()
 {
 VideoLibraryFieldMap fieldMap = new VideoLibraryFieldMap();
 Assert.AreEqual("name", fieldMap.GetFieldNameFor("nameTextbox", typeof(TextBox)));
 }
 }

Note: The entity mapping code is likely to change soon

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment-close.png

ScreenObjects/Index.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 This is significant addition to white. This should allow one to design the tests better and get rid of repeated initialization of UIItems in the tests. Brings the concept of convention over configuration to functional testing

TestStack.White provides the engine for automating windows applications. Programs written using Core expresses intention of tests are UI Controls level. TestStack.White’s API is tries to keep the intent of the program very clear.

In case of complex applications (e.g. consisting of multiple windows) the automation programs for these become complex as well and it is quite likely that their intent is not very clear.

This is where TestStack.White.ScreenObjects comes in, it brings the well known Page Object Pattern to White and Rich Client testing.

For a sample application at https://github.com/TestStack/White/blob/master/src/Sample%20App/Wpf/WpfTodo.UITests/TodoAppTests.cs which uses White’s ScreenRepository

NOTE: Some of the API’s may change over time, especially relating to reporting and Work Sessions

For more information on the Page Object Pattern, see Page Object Pattern under the guidance section of our documentation.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/down-pressed.png

FAQ.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

		Would there be support for Web Application testing?Because there are already a lot of good tools which do this, developing it is not under consideration at this point of time. Look at Selenium, Sahi, Watir, Watin and Watij for testing web applications.

		Silverlight is more like rich client why should white not support it?White Supports Silverlight, but currently there are no tests confirming it’s stability. The Silverlight support definitely needs work (and tests), but is not a priority at the moment.

		I am not able to find any items inside ToolStrip and MenuStrip (or DataGrid)If you running NUnitConsole without /nothread option then you should try that out. http://www.codeplex.com/white/WorkItem/View.aspx?WorkItemId=3603
Else,
There is a known issue with UIAutomation and ToolStrip/MenuStrip support. Please search for “UIAutomation menustrip” in google for more on this.
Try changing the ApartmentState to STA and see if that helps. In order to change this you would need to edit the app.config file for the test. See the Configuration page.

		I am unable to find window, primary UIItem or secondary UIItem, what might be wrong?Please perform LogStructure() on the parent UIItem (i.e. Desktop, Window and PrimaryUIItem) to find out the descendant automation elements. Warning: while doing this at the desktop level please make sure you do not have too many un-necessary windows open as it might take a long time to log everything.

		I have multiple UIItems of the same type which has same id and text. How can I retrieve them?In such cases generally the mechanism of indexing is preferable as that is how the user relates to them. It is explained here: (Getting Started)[/White/GettingStarted,html]

		I am using WPF and I have nested controls inside my control. Since this is not a standard control structure how do I automate this best with white.Please have a look at the WPF Items section on UI Items page.

1.** I have to put sleeps and wait-for-conditions in my tests. What is the way to get around it?**Please read the Wait Handling to understand how white works. There are a lot of applications which are built without using wait cursor (hour glass) to provide user feedback when the application is busy. This is true in the initial stages of the project, where wait notification to use is done as an after thought. If wait feedback is provided right in the application under test then white would handle it as well. This should be done in the application not for automation but the user in first place. White currently doesn’t handle custom wait cursors, this would be implemented in coming releases.

		Can white test run in the same process as the application?No. White is not designed to work in this mode as this can cause threading issues. All in principle it is not a good idea to couple test code with application under test code as they would evolve independent from each other.

		My control (e.g. Button) is embedded inside a panel/group box. Do I need to first get hold of the containing control first and then get the button from it?No you do not need to do that. You can directly get the button. This applies to all primary controls. See ControlTypeToUIItemMapping for list of primary UIItems.

		White support for office or any windows application.White is based on UIAutomation for finding controls in a window. So the strength of automation support provided by white is equal to UIAutomation. This can be checked easily by using UISpy. The UIAutomation support is best on Windows 7, so you should use that when checking with UISpy. (e.g. ribbon controls are supported by UIAutomation). There is another route to automation if you intend to run a plugin inside the application. Since the plugin is .NET based you can leverage the power of Custom Commands to drive automation.

		If you are windows 7 and facing some issues automating menusThen have a a look at following link: http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=13821

		When the process I am testing crashes, I expect White to fail. How can I do this?First off, you need to disable Windows Error Reporting, view this GIST [https://gist.github.com/JakeGinnivan/5131363] for detailsThen if you handle the process exited event, you can check the error code and throw an exception to fail your test.

		I** have asynchronous or background processes running in my app, how can I wait without using Thread.Sleep()**This is a complex subject with many scenarios and many solutions.
Head to the Waiting page for some help.

		What is the difference between System.Windows.Automation and the COM UIA Api?White was written against the .net managed automation API (Refered to as SWA from now on) which is under the System.Windows.Automation namespace. This managed wrapper has custom behaviours over the COM Api, but does not support many new automation patterns added in Windows 7 & 8.
Read more here

		I use my mouse left handed and have my mouse buttons swapped in WindowsSimply add the below code to your test setup
CoreAppXmlConfiguration.Instance.InvertMouseButtons = !System.Windows.Forms.SystemInformation.MouseButtonsSwapped;

 © Copyright 2016.
 Created using Sphinx 1.3.4.

ChangeLog.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

Version 0.11.0

Namespace Change

White Namespace changed from White.Core to TestStack.White

Run Fix-WhiteNamespaces in the nuget powershell console to automatically fix up namespace errors

Documentation Site

Documentation available at http://teststack.azurewebsites.net/

		Enhancement: x64 Support added. You can now compile your project as AnyCPU!

		Enhancement: Improved API of Slider

		Enhancement: Better Custom controls support for WPF

		Fixed: Cannot find multiline textbox in Win32 apps

		Fixed: Unable to Find Win32 modal window

		Fixed: Drag/Drop sometimes pausing until the mouse is moved

		Fixed: Better expanding/collapsing of Win32TreeView

		Fixed: Expandable lists now restore their previous expansion (after the items have been retrieved), if ComboBoxItemsPopulatedWithoutDropDownOpen is set to false

		Fixed: Automating GridView for non-English locals

		Fixed: Heaps of other little bugs fixed around selection/scrolling fixed

		Fixed: Unable to click one Menu items twice

		BREAKING: ModalWindow now throws when the window cannot be found

		BREAKING/Enhancement: MultiLineTextBox no longer exists, simply use TextBox

		TestStack.White.ScreenObjects released on NuGet

Thanks to all the contributors who helped make v0.11.0.

Version 0.10.3

		Some small updates to WPF Get extension methods

		Further tooltip fixes

Version 0.10.2

		Made ListItem selection more reliable

Version 0.10.1

		Fix: Tooltips can now be found as expected

		Retry.ForDefault method now reads it’s default timeout from White’s configuration

		New Configuration value ‘FindWindowTimeout’ which is defaulted to 30 seconds

		Added ability to take screenshots of the desktop:
		Desktop.CaptureScreenshot() returns a Bitmap

		Desktop.TakeScreenshot(string filename, ImageFormat imageFormat) saves the screenshot to file

Version 0.10.0

		BREAKING: Removed Log4net, now using Castle’s logging abstractions. See https://github.com/TestStack/White/wiki/log4net-Removal

		BREAKING: SearchCriteria.ByControlType now takes WindowsFramework rather than string

		BREAKING: WindowsFramework members renamed to Is[Framework] from [Framework]

		Fix: Lots of combobox updates/fixes

		Fix: AsContainer() could throw a NullReferenceException

		Fix: Checkbox fixes

		Fix: Added support for WPF DatePicker

		All exceptions are now serialisable

Version 0.10.0 removed the log4net dependency in TestStack.White, we now rely on Castle.Core’s Logging abstractions [http://old.castleproject.org/services/logging/index.html].

By default White uses the ConsoleFactory which will cause all logging to be directed to the console, which most unit test frameworks and build servers will pick up.

To set your own simply override the logger factory in White’s configuration.

CoreAppXmlConfiguration.Instance.LoggerFactory = new Log4netFactory();

By removing this hard dependency you can use whatever logging framework you would like with White.

Version 0.9.3

		BREAKING: White is now compiled as x86 (fixes issues when run in x64 process)

		BREAKING: White will no longer throw TargetInvocationExceptions in some cases, instead it will throw the real, unwrapped exception

		Added support for swapping mouse buttons (for left handed users/system setup) - Accessible via configuration

Version 0.9.2

		BREAKING: UIItem.Get now throws an AutomationException when the UI Element is not found

		Change: UIItem.Get now auto retries to fetch the item

		FIX: Added small delay when fetching menu items (to compensate for menu animation in newer versions of windows)

		FIX: AttachOrLaunch method now can accept a full Path.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

UIItems.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

UIItem Identification

Managed UI applications have a mechanism for identifying controls by specifying them names. These names are available for finding controls on using UIAutomation API. Name property used while developing application show up as AutomationId when using UIA API.
Un-managed applications donot have such feature. In these applications the controls are usually identified by text (white terminology) (name in UIA terminology).

Within a window any UIItem can be identified based combination following criteria.

		AutomationId is the programmatic identifier specified by the AppDeveloper. In WinForm and WPF this is the name supplied to the control. This is not present for SWT and Win32 applications. (applies only to .NET applications WinForm, WPF, Silverlight.)
For managed applications:

 SearchCriteria searchCriteria = SearchCriteria.ByAutomationId("btnOK");
 Button button = window.Get<Button>("btnOK"); //default search mechanism is by automation id
 button = window.Get<Button>(searchCriteria); // is same as above
 For un-managed applications:
 Button button = window.Get<Button>("OK"); //default search mechanism is by UIAutomation name
 button = window.Get<Button>(SearchCriteria.ByText("OK")); // same as above

		UIItem type (e.g. Button, ComoboBox)

 Button button = window.Get<Button>("btnOK"); //<Button> acts as criteria as well as the return type
 button = (Button) window.Get(SearchCriteria.ByAutomationId("btnOK").AndControlType(typeof(Button))); // same as above

		ControlType is the ControlType defined in UIAutomation. Since this is same as above these shouldn’t be a reason to use this

 button = (Button) window.Get(SearchCriteria.ByControlType(ControlType.Button).AndAutomationId("btnOK"));

		Text is the additional property defined for accessibility purposes. This property maps to some attribute on UIItem which is visible on the control. Find the detailed map here:

 button = window.Get<Button>(SearchCriteria.ByText("OK")); //OK is the display text on the button.

This is much more readable from testing point of view, as it is obvious which button we are interested in. The problem is that in an evolving application the text changes more frequently than the automation id.

		Zero based Index of UIItem in case multiple UIItems have same identification based on other parameters. Index is measured from top left corner of the window X first and Y second.

 // if there are two buttons with the same automation id.
 button = window.Get<Button>(SearchCriteria.ByAutomationId("btnOK").AndIndex(1));

		Searching based on any UIA property. (Other properties can be found from the class AutomationElement)

 button = window.Get<Button>(SearchCriteria.ByNativeProperty(AutomationElement.AutomationIdProperty, "btnOK"));

The Get method on window can be used only to find PrimaryUIItems. All the primary UIItems are shown with Object Structure. The idea behind the API is to find the primary UIItems first and then work with their specific child items if any.

ControlType to UIItem Mapping for Primary UIItems

White maps UIA control types to classes in White, to give you a familiar programming model and raise the abstraction level

[image: UIItems11]

UIA ControlType | White’s UIItem | Additional Info
——————|——————|——————
List | ListBox | The classname of ListView is misleading
DataGrid | ListView | ListView in WinForm
Edit | TextBox
Text | Label
ComboBox | ComboBox | WPFComboBox,Win32ComboBox,WinFormComboBox
Slider | Slider
Button | Button
CheckBox | CheckBox
Hyperlink | Hyperlink
Tree | Tree
RadioButton | RadioButton
Table | Table | DataGridView in WinForm maps to this
Document | TextBox | MultilineTextBox no longer exists
Tab | Tab | TabControl in WinForm
ToolBar | ToolStrip
MenuBar | MenuBar
Menu | MenuBar
MenuItem | Menu
ProgressBar | ProgressBar
Spinner | Spinner
Pane | PropertyGrid, DateTimePicker
StatusBar | StatusStrip
Image | Image
TabPage | TabItem
Custom | TableHeader, TableRow
DataItem | ListViewRow
ListItem | ListItem
TreeItem | TreeNode
Group | GroupBox
Thumb | Thumb
TitleBar | TitleBar | use window.TitleBar to retrieve it
ToolTip | ToolTip | use window. ToolTip to retrieve it

Secondary ControlTypes (Header, HeaderItem, ScrollBar, ListItem, TabItem) are not listed here.
ControlType.Window maps to Window but window is not a primary item

Menu Bars

A menu bar is part of a window, while a pop-up menu can be shown on a window. Other than this difference, the two types of menus behave in a consistent way, as far as a user is concerned. Both of them are composed of click-able menu items.

First, let’s look at how menu bar items and popup menu items can be retrieved so White can click on them.

//POP UP MENU
window.Get<ListBox>("listBoxWithPopup").RightClick();
PopupMenu popupMenu = window.Popup;
Menu level2Menu = popupMenu.Item("Root", "Level1", "Level2");
level2Menu = popupMenu.ItemBy(SearchCriteria.ByText("Root"), SearchCriteria.ByText("Level1"), SearchCriteria.ByText("Level2")); //can use any other search criteria as well.

//MENU BAR
MenuBar menuBar = window.MenuBar;
Menu level2Menu = menuBar.MenuItem("Root", "Level1", "Level2");
level2Menu = menuBar.MenuItemBy(SearchCriteria.ByText("Root"), SearchCriteria.ByText("Level1"), SearchCriteria.ByText("Level2")); //can use any other search criteria as well.

level2Menu.Click();

“Root” is one of the menus in the first level, “Level1” is inside “Root” menu and “Level2” is inside “Level1”. So on.
“Root”, etc are text of the menu visible to user.

Object Structure

Within window box, one can see all primary UIItems. This list is not complete but would give you an idea to understand the difference between primary and secondary controls.

[image: UIItems][image: UIItems1]

There is support for ListBox containing checkboxes. Use check and uncheck method.

Primary UIItems along with their secondary (child) UIItems

[image: UIItems2]

[image: UIItems3]

[image: UIItems4]

[image: UIItems5]

[image: UIItems6]

[image: UIItems7]

[image: UIItems8]

[image: UIItems9]

[image: UIItems10]

Examples

List View

In order to select multiple rows in ListView use MultiSelect method.

listView.Rows[0].Select();
listView.Rows[1].MultiSelect(); //This would keep the 0th row selected as well

ListBox
listBox.Check("item1"); // in checked listBox, to check the item
listBox.UnCheck("item1");
ListItems items = listBox.Items; // get all the items
listBox.Select("item1"); // select an item
ListItem listItem = listBox.SelectedItem; // get a selected item

ComboBox
comboBox.Select("Arundhati Roy");
ListItem listItem = comboBox.SelectedItem;

Tree

Tree consists of TreeNodes. Each of the TreeNode object can contain further TreeNodes.
In order to select a TreeNode first find the node and call select method on it.

TreeNode treeNode = tree.Node("Root", "Child1");
treeNode.Select(); //Just selects the node without expanding it. Depending on your application logic this might also expand and collapse the node.
treeNode.Expand(); //Expand the node and display child nodes belonging to this node.
treeNode.Collapse(); //Collapse this node
treeNode.IsExpanded; //Return the state expansion state

DateTimePicker

Currently it supports only Date and not the time. Since there is no native support for DateTimePicker in UIAutomation for setting the value, White uses keyboard to set the value. When the value is set it enters the value, without opening the calendar. Hence it is important for it to know the DateFormat.
There are two ways to set the date.

DateTimePicker dateTimePicker = window.Get<DateTimePicker>("dob");
dateTimePicker.Date = DateTime.Now.AddMonth(1);

In this case DateTimePicker would use the configured DateFormat (in case no explicit configuration it uses default format based on the current culture).

DateTimePicker dateTimePicker = window.Get<DateTimePicker>("dob");
dateTimePicker.SetDate(DateTime.Now.AddMonth(1), DateFormat.YearDayMonth);

These are possible DateFormats:
DayMonthYear, DayYearMonth, MonthDayYear, MonthYearDay, YearMonthDay and YearDayMonth

Configuring DateFormat

You need to set the DefaultDateFormat property in the configuration file under section Core. The possible values are:
“DayMonthYear”, “DayYearMonth”, “MonthDayYear”, “MonthYearDay”, “YearMonthDay” and “YearDayMonth”

WPF Items

WPF allows the UI developer to compose controls of dynamic types. Since the control structure is not predictable in WPF, white’s UIItem structure allows one to do the same while testing.
e.g. If ListItem has a text box

// other imports
using White.Core.UIItems.WPFUIItems; //add this using allows one use Get and GetMultiple methods on any UIItem
namespace White.Core.UIItems.ListBoxItems
{
 [TestFixture]
 public class WPFListBoxTest
 {
 [Test]
 public void ListItemContainingTextbox()
 {
 // code to get the window object
 var listBox = window.Get<ListBox>("listBox");
 var listItem = (WPFListItem) listBox.Items.Find(item => "Foo".Equals(item.Text));
 var textBox = listItem.Get<TextBox>(SearchCriteria.All);
 }
 }
}

Thumb

Used to control the splitter control, which can be slid by dragging the mouse.

Thumb thumb = window.Get<Thumb>("splitter");
thumb.SlideHorizontally(10); //move the splitter 10 pixels to the right
thumb.SlideHorizontally(-15); //move the splitter 15 pixels to the left

// in case of vertical splitter
thumb.SlideVertically(10); //move the splitter 10 pixels down
thumb. SlideVertically(-15); //move the splitter 15 pixels up

GroupBox/Panel

Since GroupBox and Panel extend from UIItemContainer one can retrieve items from within groupbox or panel using:

GroupBox groundBox = window.Get<GroupBox>("groupBox1");
Button button = groupBox.Get<Button>("button1"); //provides button which is inside the group box
groupBox.Get<Button>(SearchCriteria.ByText("OK")); //other search techniques available on window are also available here.

ToolBar/ToolStrip

ToolStrip toolStrip = window.Get< ToolStrip >("toolStrip1");

WPF Expander Control

// other imports
using White.Core.UIItems.WPFUIItems; //add this using allows one use Get and GetMultiple methods on any UIItem
namespace White.Core.UIItems.ListBoxItems
{
 [TestFixture]
 public class UseExpanderControlTest
 {
 [Test]
 public void Sample()
 {
 // code to get the window object
 var expander = window.Get<GroupBox>("expander1"); //Expander control is really a GroupBox
 var buttonToExpand = expander.Get<Button>("expanderButton1");
 buttonToExpand.Click();
 }
 }
}

It is recommended you create an abstraction for your expander. Since its structure is not a standard, white cannot provide the same.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/minus.png

Configuration.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 ##NOTE: This section needs revisiting and is likely out of date

Configuration
White configuration is done in App.config file. You need to setup configSections, sectionGroup and section. Here is an example of how to do this, with the default values for them. In case any property value is not specified these values would be used.

<configSections>
 <sectionGroup name="NUnit">
 <section name="TestRunner" type="System.Configuration.NameValueSectionHandler"/>
 <section name="ProgramMode" type="Debug"/>
 </sectionGroup>
 <sectionGroup name="White">
 <section name="Core" type="System.Configuration.NameValueSectionHandler"/>
 </sectionGroup>
</configSections>

<White>
 <Core>
 <add key="WorkSessionLocation" value="." />
 <add key="PopupTimeout" value="5000" />
 <add key="SuggestionListTimeout" value="3000" />
 <add key="BusyTimeout" value="5000" />
 <add key="WaitBasedOnHourGlass" value="true" />
 <add key="UIAutomationZeroWindowBugTimeout" value="5000" />
 <add key="TooltipWaitTime" value="3000" />
 <add key="DragStepCount" value="4" />
 </Core>
</White>

WorkSessionLocation

Location where the WindowItemsMap is stored as xml. WindowItemsMap is create to Speed up performance by Position based search.

PopupTimeout, TooltipWaitTime, SuggestionListTimeout, BusyTimeout, WaitBasedOnHourGlass, UIAutomationZeroWindowBugTimeout, TooltipWaitTime

Checkout, Wait handling

ComboBoxItemsPopulatedWithoutDropDownOpen

In certain situations the combo box item properties are not reflected in the Automation Elements unless the combo box Drop down is opened once. This poses problem for white to do actions which require white to search for items by text. In order to get around this situation white always opens and closes the Drop down when a combo box item is constructed. This can have slight performance over head and can be annoying. This configuration property can be used to avoid doing this. As in most cases such problems don’t exist, the default value for this configuration is true.

RawElementBasedSearch

Read Search depth.

MaxElementSearchDepth

Read Search depth. Applicable only when RawElementBasedSearch=true.

MoveMouseToGetStatusOfHourGlass

In order to check whether application is busy (processing the last action or not) white moves the mouse to top-left-corner of screen. This doesn’t work in few cases, when application is not maximized and top left corner takes the mouse outside the application window, when the application under test controls the mouse pointer appearance based on its position. In such cases this property can set to false.

DragStepCount

When using drag and drop this specifies the number of steps in which drag should be performed. Default value is one step, which means that mouse location is changed from source to destination in one go.

DoubleClickInterval

White doesn’t have any sleep for between two clicks of a mouse. But such waits can be introduced using this property. White also uses this property to ensure that the drag and drop operations do not result in double click. The value is in milliseconds.

All of these properties can be configured via program as well. Sample code which in order to read/update these values. The configured values are logged when you run white programs.

Console.WriteLine(CoreAppXmlConfiguration.Instance.PopupTimeout);
CoreAppXmlConfiguration.Instance.TooltipWaitTime = 100;

WorkSessionLocation specifies the location for storing UIItem position file
For description of other properties look at the Wait Handling section

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/comment.png

search.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/CustomUIItems.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 Fundamentally all UIItems are either elementary (Label, e.g. having no other item in it) or composed of other UI Items. In white there is in-built support for standard UIItems. These are called standard mainly because of their prevalent use and ready availability in development environments.
When we use “third party controls”, this might not be enough. Even though these UI Items are still made up of elementary items and can be automated by finding them individually. But we might miss some abstraction while doing this. Also we need build a lot of things in these items ourselves which are already done in white for other items. This is where Custom UI Item would be useful.

Sample code of a Date control which consists of three text boxes for day, month and year. (See the inline comments)

//Specify the ControlType which corresponds to the top level of Custom UI Item.
//White needs this when finding this item inside the window.
[ControlTypeMapping(CustomUIItemType.Pane)]
public class MyDateUIItem : CustomUIItem
{
 // Implement these two constructors. The order of parameters should be same.
 public MyDateUIItem(AutomationElement automationElement, ActionListener actionListener)
 : base(automationElement, actionListener)
 {
 }

 //Empty constructor is mandatory with protected or public access modifier.
 protected MyDateUIItem() {}

 //Sample method
 public virtual void EnterDate(DateTime dateTime)
 {
 //Base class, i.e. CustomUIItem has property called Container. Use this find the items within this.
 //Can also use SearchCriteria for find items
 Container.Get<TextBox>("day").Text = dateTime.Day.ToString();
 Container.Get<TextBox>("month").Text = dateTime.Month.ToString();
 Container.Get<TextBox>("year").Text = dateTime.Year.ToString();
 }
}

This is how it can be used.
MyDateUIItem myDateUIItem = window.Get(“dateOfBirth”);
Assert.AreNotEqual(null, myDateUIItem);
myDateUIItem.EnterDate(DateTime.Today);

If you have downloaded the source code you can find all of this in CustomItemTest.cs

What do I need to do when the CustomUIItem type is not specified is not defined in the source code already?

These are the places where you need to make the change.

		Add your type in CustomUIItemType

		Add the mapping to UIAutomation ControlType

mappings[CustomUIItemType.Table] = System.Windows.Automation.ControlType.Table;

What happens to the extended controls? e.g. I extend TextBox in the code and use MyTextBox.

In such a case the it would remain as TextBox for white.

Subclassing CustomUIItems

		Since the object has to be constructed by white. You need to define the same constructors in the subclass.

		The CustomUIItem type attribute should be redefined in the subclass.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

GettingStarted.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

Pre-requisites

.NET 4.0 framework

Getting Started

		Install via NuGet> install-package TestStack.White

		Have a look at the WPF [https://github.com/TestStack/White/tree/master/src/Sample%20App/Wpf] or WinForms [https://github.com/TestStack/White/tree/master/src/Sample%20App/WinForms] sample projects

		Have a look at Whites UI Tests, White has automated tests for most controls to prevent regressions in the codebase. These serve as a great example of how to automate different controls. See White’s UI Tests [https://github.com/TestStack/White/tree/master/src/TestStack.White.UITests/ControlTests]

		Download http://uiautomationverify.codeplex.com/ which is an ESSENTIAL tool when doing UI Automation work.

		Start writing tests, first off you require a unit testing framework like xUnit or nUnit. See below for a basic walkthrough

		Join the mailing list at https://groups.google.com/forum/#!forum/teststack_white

		Report issues at https://github.com/TestStack/White/issues?state=open

		If you would like to contribute back, read Contributing to learn how to get started contributing back!

Writing your first test

Start off with an empty test stub

In MSTest:

[TestClass]
public class MyTests
{
 [TestMethod]
 public void MyFirstUITest()
 {
 }
}

In NUnit:

[TestFixture]
public class MyTests
{
 [Test]
 public void MyFirstUITest()
 {
 }
}

In xUnit:

public class MyTests
{
 [Fact]
 public void MyFirstUITest()
 {
 }
}

Get hold of a window

First you need to determine the correct path of the application you want to test.

In MSTest:

var applicationDirectory = TestContext.TestDeploymentDir

In NUnit:

var applicationDirectory = TestContext.CurrentContext.TestDirectory;

Then you create a new instance of your application

var applicationPath = Path.Combine(applicationPath, "foo.exe");
Application application = Application.Launch(applicationPath);
Window window = application.GetWindow("bar", InitializeOption.NoCache);

White uses the UI Automation API (UIA) to find controls on a window. UIA communicates to a displayed window via window messages. This find is performed by iterating through all the controls in a window.

Finding a UI Item and performing action

Button button = window.Get<Button>("save");
button.Click();

Finding a UIItem based on SearchCriteria

SearchCriteria searchCriteria = SearchCriteria
 .ByAutomationId("name")
 .AndControlType(typeof(TextBox))
 .AndIndex(2);
TextBox textBox = (TextBox) window.Get(searchCriteria);
textBox.Text = "Anil";

Reporting Issues

When reporting issues please include the following information:

		The target framework (WPF, Winforms etc)

		The version of White you are using

		[Recommended] A failing test! or

		[Recommended] A Gist with the code which is failing

		The more information the better, we accept pull requests with failing tests and pull requests which fix the issue too!

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/SearchDepth.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

		UI Automation provides two approach for querying the UIAutomation tree of an automation element.

		Search on automation element tree: In this search the API user specifies the criteria and scope of the search. The scope is of two levels children or descendant. This is simpler API as the user doesn’t need to match against every element.

Search during automation element tree navigation: In this search the user is provided with tree navigation calls which the she can use to search the elements among other things. This provides complete freedom to the user at the cost of simplicity of API.
White until release 0.19 used only the first approach. With 0.20 one can configure search based on tree navigation using the RawElementBasedSearch property in Configuration file. This property is used along with MaxElementSearchDepth property which indicates the depth of navigation, white should perform when using this mode. Hence, if you have a very deep tree but you hope to find your UI Items within 4 levels then you can set RawElementBasedSearch=true and MaxElementSearchDepth=4, and this would perform much better than when RawElementBasedSearch=false. Like most other configuration this can be set programmatically using CoreAppXmlConfiguration.Instance.

CoreAppXmlConfiguration.Instance.RawElementBasedSearch = true;
CoreAppXmlConfiguration.Instance.MaxElementSearchDepth = 2;
var listView = window.Get<ListView>("listView");
// or any of other execution in white would use search depth of 2
CoreAppXmlConfiguration.Instance.RawElementBasedSearch = false; // white starts using regular search

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/plus.png

Windows.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

Getting window

Application Windows

List<Window> windows = application.GetWindows(); //Returns a list of all main windows in belonging to an application. It doesn't return modal windows.
Window mainWindow = application.GetWindow("main"); //Returns a window with provided title.

Desktop Windows

List<Window> windows = Desktop.Instance.Windows(); //Returns a list of all main windows on the desktop. It doesn't return modal windows.

Modal windows

Window mainWindow = application.GetWindow("main");
List<Window> modalWindows = mainWindow.ModalWindows(); //list of all the modal windows belong to the window.
Window childWindow = mainWindow.ModalWindow("child"); //modal window with title "child"
childWindow.IsModal; //returns true
window.MessageBox can also be used for getting a message box window, which is special modal window.

Mdi child window

Use it to find a MDI child belonging to a window.

Window window = Desktop.Instance.Windows().Find(obj => obj.Title.Contains("Microsoft Visual Studio"));
if (window == null) return;
window.MdiChild(SearchCriteria.ByControlType(ControlType.Pane).AndByText("FooObject.cs"));

Since there is no single standard for creating MDI child windows, the method takes SearchCriteria, hence giving you the control of how to find child window. (Use UIA Verify [https://uiautomationverify.codeplex.com/] for looking at the UIAutomation tree of the window.)

Performing special operations on a window

Attached Keyboard and mouse

provides a keyboard or mouse which would wait for the window to be idle after every action. All the actions possible on the mouse and keyboard are supported by these.

Tooltip

any window, including it child controls can have only one visible tooltip at a time, hence this method is available on the window object.

string message = window.ToolTip;

In some applications the tool tip is associated to an error provider which looks like [image: Windows].

When mouse is hovered on it, a message is shown as tooltip. This need not be implemented by user as it is pretty standard behaviour and white provides it out of the box. If the message is set on the error provider for ComboBox then:

var comboBox = window.Get<ComboBox>("komboBox");
string message = comboBox.ErrorProviderMessage(window);

Closing the window

Window object implements IDisposable interface, so that it can be used with the using block. Also, dispose is same as close. One can also check whether a window was closed or not. When a window.Close() is called white would try to close it using the WindowPattern provided by UIAutomation. In case this pattern is not implemented then white would make use of the close in the title bar to close it.

window.Close(); //by default it waits while the window is busy.
bool isClosed = window.IsClosed; //isClosed would be true

Tool bar

Typical a window has zero or one tool bar. But it is possible to have more than one present on a window. Most likely scenario works as a special case of generic scenario in white.

ToolStrip toolStrip1 = window.GetToolStrip("toolStripId1");
// if there is only one then one can also do following to achieve the same
toolStrip1 = window.ToolStrip;
//ToolStrip is a UIItemContainer so child items can be found from it by call get methods.
Button button = toolStrip1.Get<Button>("toolButton");

WaitWhileBusy

It makes the window wait till the user input cannot be provided as it is busy performing background tasks. This method need not be called as all operations on UIItems explicitly call this at the end of every action. This method wouldn’t cause wait indicated as hour glass, since this is controlled by application. But this is taken care of explicitly inside white but is not exposed to the user. Waiting based on hour glass is the default approach which can be turned off. Configuration

Menu

A window can contain multiple menu bars. White supports working with multiple and since having single menu bar is so common it provides a convenience method for it.

List<MenuBar> menuBars = window.MenuBars;
MenuBar menuBar = window.MenuBar; //use it to get the only menu bar.

Display state

A window can be in three display states: maximize, minimized and restored. DisplayState property on window provides this. Core.UIItems.WindowItems.DisplayState enum can be used to specify the state to a window.
Whether or not a window is the top most window at time can be retrieved by IsCurrentlyActive property.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/MouseAndKeyboard.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

Using keyboard/mouse directly

Ideally you don’t need to use these directly but if you do want to use. If you do want to use it then please use window.Keyboard and window.Mouse instead on instantiating a new window. The different between these two is that the use of Keyboard.Instance gives you raw keyboard and any operation performed on it would not wait till the window is busy. You can call window.WaitForInputIdle as well.

Moving the mouse to a particular location
var point = new Point(100, 100);
mouse.Location = point;

Moving the mouse to a particular UI Item
mouse.Location = uiItem.Bounds.Center(); //Please see the class RectX to see options of different locations to which a mouse can be moved.

Sometimes you do not want to use mouse to be used for click and directly use the pattern provided by the UI Automation framework. You can use RaiseClickEvent event method on any UI Item as long as it supports InvokePattern. If it doesn’t support the pattern then this would result in no-op.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/ContinuousIntegration.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 White drives the mouse and keyboard for it’s automation, and only falls back to the automation API’s when it can’t use the mouse/keyboard. This simulates real world behavior more than using automation directly.This means that White has to run on an UNLOCKED desktop.

Here is a list of my setup requirements when I create a UI test agent:

		The build agent running as a Console agent (both TFS and TeamCity support this) and set it to automatically start on boot

		Automatic logon setup (Use SysInternals Autologon for Windows [http://technet.microsoft.com/en-us/sysinternals/bb963905.aspx] as it encrypts your password in the registry)

		Screensaver disabled

		Disable Windows Error Reporting. View on Gist: DisableWER.reg [https://gist.github.com/JakeGinnivan/5131363]

		VNC installed and connect via VNC, not remote desktop
		When you connect using Remote desktop, then disconnect, the desktop will be locked, and UI Automation will fail

		Personally I use Tight VNC [http://www.tightvnc.com/] with the DFMirage driver [http://www.tightvnc.com/download.php]

		I also put a shortcut (cmd) which restarts the PC on the desktop shutdown -r -t 0. Useful for when you connect via Remote Desktop, you can then reboot, and auto login will make sure your test agent is good to go when it comes back up!

Make sure that, while running these tests you would need to make sure that there aren’t applications which would show windows while test is running. e.g. new chat message window coming up in restored or maximum mode. (I am not going into this here but there are ways to do this, like get the Yahoo Messenger new message window can be made to show as minimized).

You might have issues running it in CI, if the server runs as windows service. Allowing the service to “interact with the desktop” might help. (This can be set from the service properties log-on tab)

Please choose user version of windows instead of server versions. i.e. XP/Windows7 over Windows2003/Windows2008. The automation support for UIA is generally poor in server editions of windows.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/index.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 If you would like to know more about how White works, or set it up on a build server this is the place for you

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/UIAv3.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 White will soon be running against the UIA COM Wrapper [https://github.com/JakeGinnivan/UIAComWrapper] which means that White can support and will expose UI patterns for Virtualisation, and also add support for WinRT applications.

Breaking Changes

Unfortunately, this will not be a perfectly clean upgrade. There are many small behavior differences, and some more fundamental changes.

For example, SWA would return a control type of document for a multi-line textbox in Windows forms, in the COM UIA Api the control type that is exposed is edit. But WPF will still have a control type of This means that with the UIA Com wrapper, a multi-line textbox in WPF you would use the MultiLineTextBox control in White, but in WinForms you would just use TextBox.
There are a number of different controls which have changed slightly, and I will do my best to document changes below.

Behavior changes

		Combo-box items no longer are visible to UIA while closed

Control changes

A few controls will change, for these changes, White will throw meaningful exceptions along the lines of

The MultiLineTextBox control is no longer supported in Winforms due to a change in UIA 3.0, please use the TextBox or WinFormTextBox instead.

Conversion list

Windows Forms:

		MultiLineTextBox -> TextBox

		ListView -> ListBox

 © Copyright 2016.
 Created using Sphinx 1.3.4.

AdvancedTopics/ThirdPartyControls.html

 Navigation

 		
 index

 		TestStack_White latest documentation »

 White provides support for all the controls which comes with standard .NET libraries. This support is partially just abstraction over UIAutomation and window messages. So, in case of third party controls like DevExpress, PureComponents etc, there are no standard UIItem implementation in white which you can use out of the box. The reason being the automation element structure beneath is unique to each of them. These Custom UI Item can be plugged in to white.
While implementing these you might face issues. Some known issues and possible resolution is provided below. Soon we would have a sample for each of them available here:

Do not rely on UISpy

UISpy comes along with .NET SDK. Please do not trust UISpy, it doesn’t tell everything even for standard controls. You can use LogStructure() method to see what is present inside the control. This method is available on all the UIItems including window. It prints out the entire UIA tree which is helpful, if you are having problem finding UIItems. The structure would be logged in log file (and console if configured) as configured in log4net Configuration.
A lot of people on the white forums have been successful with http://www.codeplex.com/UIAutomationVerify for the same.

Silverlight

Some of the controls http://msdn.microsoft.com/en-us/library/cc645045(VS.95).aspx?ppud=4 which come with silverlight do not have built-in support for UIAutomation. Hence white cannot recognize them.

Focusing the UIItem

...using Focus method, sometimes activates the UIAutomation to fetch the internal elements.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

